Abstract

The basic fibroblast growth factor (bFGF) plays a significant role in promoting the process of bone repair, but bFGF cannot keep its biological activity stable under normal physiological conditions. Therefore, the development of better biomaterials to carry bFGF remains a challenge for bone repair and regeneration. Here we designed a novel recombinant human collagen (rhCol), which could be cross-linked by transglutaminase (TG) and loaded bFGF to prepare rhCol/bFGF hydrogels. The rhCol hydrogel possessed a porous structure and good mechanical properties. The assays, including cell proliferation, migration, and adhesion assay, were performed to evaluate the biocompatibility of rhCol/bFGF and the results demonstrated that the rhCol/bFGF promoted cell proliferation, migration and adhesion. The rhCol/bFGF hydrogel degraded and released bFGF controllably, enhancing utilization rate of bFGF and allowing osteoinductive activity. The results of RT-qPCR and immunofluorescence staining also proved that rhCol/bFGF promoted expression of bone-related proteins. The rhCol/bFGF hydrogels were applied in the cranial defect in rats and the results confirmed that it accelerates bone defect repair. In conclusion, rhCol/bFGF hydrogel has excellent biomechanical properties and can continuously release bFGF to promote bone regeneration, suggesting that rhCol/bFGF hydrogel is a potential scaffold in clinic application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call