Abstract

Injectable self-healing hydrogels containing functional nanoparticles (NPs) have attracted much attention in many fields of biomedicine. A series of injectable self-healing hydrogels containing PEGylation CuS NPs based on N-carboxyethyl chitosan (CEC) and oxidized sodium alginate (OA) were developed by taking advantages of the unique functions of CuS NPs and chitosan, referred to as CuS NP hydrogels or CEC-OAm-CuSn, where "m" stands for the concentration percentage of the added OA solution (w/v) and "n" represents the molar concentration of CuS NPs in the hydrogels. The physical properties of CuS NP hydrogels, syringeability, rapid self-repair ability, and photothermal performance were systematically investigated. The multiple functions for CuS NP hydrogels requested in the skin healing process were explored. The results showed that CuS NP hydrogels had not only adjustable physical properties and good injectable self-healing characteristics but also excellent functionalities, concurrently including hemostatic ability, bacteria killing capability, and cell migration and proliferation promotion. In vivo wound healing and histomorphological examinations of immunofluorescence staining in a mouse full-thickness wound model demonstrated good acceleration effects of these hydrogels for infected wound healing. Therefore, these injectable self-healing CuS NP hydrogels which possess the abilities of hemostasis, antibacterial activity, and infected-wound healing promotion exhibit great potential as in situ wound dressings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call