Abstract
Vaccines typically contain an antigen, delivery system (vehicle), and adjuvant, all of which contribute to inducing a potent immune response. Consequently, design of new vaccines is difficult, because the contributions and interactions of these components are difficult to distinguish. Here, it is aimed to develop an easy-to-use, non-immunogenic, injectable depot system for sustained antigen release that will be suitable for assessing the efficacy of prolonged antigen exposure per se for inducing an immune response. This should mimic real-life infections. Recombinant elastin-like polypeptides with periodic cysteine residues (cELPs) are selected, which reportedly show little or no immunogenicity, as carriers and tetanus toxoid (Ttd) as an antigen. After subcutaneous injection of the mixture, cELP rapidly forms a disulfide cross-linked hydrogel in situ, within which Ttd is physically incorporated, affording a biodegradable antigen depot. A series of Ttd-containing hydrogels is examined. A single injection induces high levels of tetanus antibody with high avidity for at least 20 weeks in mice. The chain length of cELP proves critical, whereas differences in hydrophobicity has little effect, although hydrophilic cELPs are more rapidly biodegraded. This system's ability to distinguish the contribution of sustained antigen release to antibody induction should be helpful for rational design of next-generation vaccines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.