Abstract

Chronic local inflammation and resulting cellular dysfunction of nucleus pulposus (NP) cells are important pathogenic factors of intervertebral disc degeneration (IDD). Injectable pathological microenvironment-responsive hydrogels hold significant potential for treating IDD by adapting to dynamic microenvironment of IDD. Herein, we proposed an injectable gelatin-based hydrogel drug delivery system that could respond to the pathological microenvironment of IDD for controlled release of anti-inflammatory drug to promote degenerative NP repair. The hydrogel system was prepared by conjugating phenylboronic acid-modified gelatin methacryloyl (GP) with the naturally extracted anti-inflammatory drug epigallocatechin-3-gallate (EGCG) through dynamic boronic esters. The hydrogel exhibited excellent degradability, injectability, antioxidant properties, anti-inflammatory effects, and biocompatibility. It also displayed responsive-release of EGCG under high reactive oxygen species (ROS) levels and acidic conditions. The hydrogel demonstrated remarkable cytoprotective effects on NP cells in both hyperactive ROS environments and inflammatory cytokine-overexpressed environments in vitro. In vivo studies revealed that the hydrogel injected in situ could effectively ameliorate the intervertebral disc degeneration by maintaining the disc height and NP tissue structure in a rat IDD model. The hydrogel system exhibited excellent biocompatibility and responsive-release of diol-containing drugs in pathological microenvironments, indicating its potential application as a drug delivery platform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.