Abstract

Photothermal hydrogel adhesives have yielded promising results for wound closure and infected wound treatment in recent years. However, photothermal hydrogel bioadhesives with on-demand removability without additional nanomaterials-based photothermal agents have rarely been reported in the literature. In this work, an injectable intrinsic photothermal hydrogel bioadhesive with an on-demand removal trait is developed through dynamic cross-linking of gelatin (Gel), tannic acid (TA) quinone, and borax for closing skin incisions and accelerating methicillin-resistant Staphylococcus aureus (MRSA) infected wound healing. The TA quinone containing polyphenol and quinone groups with multifunctional adhesiveness and intrinsic photothermal performance confer the hydrogel adhesive with near-infrared (NIR) responsive antibacterial activity. The cross-linking of pH-sensitive boronic ester (polyphenol-B) and Schiff base bonds endow the hydrogel with great self-healing capacity and on-demand removability. Moreover, the hydrogel possesses good biocompatibility, injectability, and hemostasis. The in vivo experiment in a rat cutaneous incision model and full-thickness MRSA-infected wound model indicate that the smart hydrogel can close wounds efficiently and treat infected ones, demonstrating its superiority in noninvasive treatment of cutaneous incisions and enhancing infected full-thickness wound healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call