Abstract
Monitoring hydrogel degradation in real time using noninvasive imaging techniques is of great interest for designing a scaffold in tissue engineering. We report the preparation of gadolinium (Gd)-labeled and injectable hyaluronic acid (HA) hydrogels that can be visualized using T1- and T2-weighted magnetic resonance imaging (MRI). An HA derivative functionalized with thiol and hydrazide was labeled using a diethylenetriaminepentaacetate complex modified with “clickable” dithiopyridyl functionalities (degree of modification was 3.77% with respect to HA repeat units). The HA derivative modified with cross-linkable groups and Gd complex exhibited relaxivities r1 = 3.78 mM−1s−1 and r2 = 56.3 mM−1s−1. A hydrazone hydrogel network was obtained by mixing Gd-labeled HA-hydrazide and HA-aldehyde derivatives. Enzymatic hydrogel degradation could be followed using MRI because the MR images showed great correlation with the hydrogel mass loss. Ex vivo MRI of injected Gd-labeled hydrogels demonstrated that they show a significant contrast difference (SNRcoronal = 456; SNRaxial = 459) from the surrounding tissues. These results indicate that our Gd-labeled HA hydrogel has great potential as an injectable biocompatible hydrogel that can be used for longitudinal tracking in vivo using MRI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.