Abstract

Injectable hydrogels may potentially be used for augmentation/regeneration of the lamina propria of vocal fold tissue. In this study, hyaluronic acid (HA) and dextran were chemically modified and subsequently crosslinked via formation of hydrazone bonds in phosphate buffer. Swelling ratios, degradation, and compressive moduli of the resulting hydrogels were investigated. It was found that the properties of HA-dextran hydrogels were variable and the trend of variation could be correlated with the hydrogel composition. The biocompatibility of three injectable HA-dextran hydrogels with different crosslinking density was assessed in the vocal fold region using a ferret model. It was found that HA-dextran hydrogels implanted for three weeks stimulated mild foreign-body reactions. Distinct tissue-material interactions were also observed for hydrogels made from different formulations: the hydrogel with the lowest crosslinking density was completely degraded in vivo; while material residues were visible for other types of hydrogel injections, with or without cell penetration into the implantation depending on the hydrogel composition. The in vivo results suggest that the HA-dextran hydrogel matrices can be further developed for applications of vocal fold tissue restoration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.