Abstract

Injectable hydrogels have attracted a lot of attention in drug delivery, however, their capacity to deliver water-insoluble or hydrophobic anti-cancer drugs is limited. Here, we developed injectable graphene oxide/graphene composite supramolecular hydrogels to deliver anti-cancer drugs. Pluronic F-127 was used to stabilize graphene oxide (GO) and reduced graphene oxide (RGO) in solution, which was mixed with α-cyclodextrin (α-CD) solution to form hydrogels. Native hydrogel was used as control. GO or RGO slightly shortened gelation time. The storage and loss moduli of the hydrogels were tracked by dynamic force measurement. The storage modulus of GO or RGO composite hydrogels was larger than that of the native hydrogel. Hydrogels were unstable in solution and eroded gradually. GO or RGO in Pluronic F-127 solution could potentially improve the solubility of the water-insoluble anti-cancer drug camptothecin (CPT), especially with large drug-loaded CPT amount. Drug release behaviors from solutions and hydrogels were characterized. The nanocomponents (GO or RGO) were able to bind more drug molecules either for CPT or for doxorubicin hydrochloride (DXR) in solution. Therefore, GO or RGO composite hydrogel could potentially enable better controlled and gentler drug release (for both CPT and DXR) than native hydrogel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call