Abstract

Tissue regeneration necessitates rapid and mature angiogenesis, while insufficient vascularization along with tissue implantation hinders the great potential applications. Endothelial cells (ECs) and bone marrow mesenchymal cells (BMSCs) are responsible for the angiogenesis in preparing bone tissue. Herein, we proposed the realization of the angiogenesis by co-culturing ECs and BMSCs within an injectable multi-crosslinked double-network (DN) hydrogel, composed of glycol chitosan (GC)/benzaldehyde-capped poly (ethylene oxide) (OHC-PEO-CHO) and calcium alginate (Alg). The hydrogel is crosslinked by dynamic interplay allowing the encapsulation, migration and proliferation of the cells. The hydrogel is capable to carry vascular endothelial growth factor (VEGF) with prolonging action within the matrix to effectively regulate the cell behavior. Co-existence of ECs and BMSCs with the VEGF within the hydrogel-based extracellular matrix (ECM) plays a key role in mediating the formation of a mature vascular structure with endothelium and pericyte. The neovascularization is closely related with the VEGF/VEGFR2/ERK signaling pathway. The finding indicates the direction toward future vascularized tissue regeneration by using a hydrogel-based scaffold with adjustable microenvironment by incorporation of functional growth factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.