Abstract

Herein, we reported novel docetaxel-decorated solid lipid nanoparticle (DCT-SLN)-loaded dual thermoreversible system (DCT-DRTS) for intramuscular administration with reduced burst effect, sustained release and improved antitumor efficacy. The optimized DCT-DRTs was subjected to in-vitro and in-vivo analyses. Antitumor evaluation of the DCT-DRTS was executed and compared with DCT-hydrogel, and DCT-suspension trailed by the histopathological and immune-histochemical analyses. The DCT-SLN gave a mean particle size of 157 nm and entrapment efficiency of 93 %. It was a solid at room temperature, and changed to liquid at physiological temperature due to its melting point of about 32 °C. Unlikely, poloxamer mixture remained liquefied at 25-27 °C, however converted to gel at physiological temperature. This behavior demonstrated opposed reversible property of the DCT-SLN and poloxamer hydrogel in DCT-DRTS system, making it ideal for intramuscular administration and quick gelation inside the body. The DCT-DRTS sustained the drugs release and unlike DCT-hydrogel, the preliminary plasma concentration of DCT-DRTS was significantly reduced, overcoming the burst release. A meaningfully enhanced antitumor efficacy and improved survival rate was observed from DCT-DRTS in tumor cell xenograft athymic nude mice. Additionally, increased apoptotic and reduced proliferation markers were observed in DCT-DRTS treated tumor masses. It was concluded that DCT-DRTS may be a suitable choice for intramuscular administration of DCT with sustained release, improved bioavailability, reduced toxicity and enhanced antitumor effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.