Abstract
Injectable hydrogels with self-healing and pH-responsive property are appealing for biomedical applications. Herein, we developed a facile and green method to prepare a multifunctional polysaccharide-based hydrogel as a new carrier of drug. The hydrogels were prepared by forming reversible chemical bond between carboxyethyl-modified chitosan (CEC) and aldehyde modified hyaluronic acid (A-HA). The morphology and rheological property of the hydrogels with different solid content were systematically characterized. Owing to the dynamic equilibrium of the Schiff base bonds between amine groups on CEC and aldehyde groups on A-HA, the rapid self-healing performance of hydrogels was confirmed through qualitative and quantitative methods without any external stimulus. The pH-responsive behaviour was demonstrated by equilibrium swelling and in vitro Doxorubicin (Dox) release in PBS medium with various pH. In acidic condition, Dox can be release more rapidly compared with weak alkaline medium. Furthermore, the kill effect of Dox released from hydrogels for cancer cells was investigated. In vitro degradation and cytotoxicity examinations showed that the hydrogel is biodegradable and biocompatible. Therefore, such polysaccharide-based injectable self-healing and pH-responsive hydrogel is a promising candidate as drug delivery carrier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.