Abstract

Self-healing performance plays an important role in the in situ microinvasive injection of hydrogels, which can reduce sudden drug release and prolong the service life of hydrogels. In this paper, a multifunctional injectable and self-healing hydrogel for wound healing was developed. Chitosan (CS) was modified with TA to achieve potential adhesion, anti-inflammatory properties, and slower degradation rate. The hydrogel was formed by Schiff base reaction based on amino groups in CS and aldehyde groups in oxidized hyaluronic acid (OHA). The gel formation process was quick and convenient in mild conditions without extra initiators. Due to the dynamically reversible covalent bonds, the hydrogel could self-heal within 2 min after injection. It also had good biocompatibility and hemostatic performance. With the addition of TA, the hydrogel acquired anti-inflammatory properties and promoted cell growth, effectively accelerating the wound-healing process in vivo. The CS-TA/OHA hydrogel is expected to be used for skin repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.