Abstract

The management of infected wounds poses a significant challenge due to the growing issue of antibiotic resistance, underscoring the urgent necessity to innovate and implement alternative therapeutic strategies. These strategies should be capable of eliminating bacterial infections in infected wounds while circumventing the induction of multi-drug resistance. In the current study, we developed an easily prepared and injectable fibrin gel (FG) loaded with nanoparticles (NPs) that exhibit antibacterial and immunomodulatory properties to facilitate the healing of infected wounds. Initially, a novel type of NP was generated through the electrostatic interaction between the photothermal agent, mPEG-modified polydopamine (MPDA), and the nitric oxide (NO) donor, S-nitrosocysteamine (SNO). This interaction resulted in the formation of NPs referred to as SNO-loaded MPDA (SMPDA). Subsequently, the SMPDA was encapsulated into the FG using a double-barreled syringe, thereby producing the SMPDA-loaded FG (SMPDA/G). Experimental results revealed that SMPDA/G could effectively eliminate bacterial infections and alter the immune microenvironment. This efficacy is attributed to the synergistic combination of NO therapy and photothermal therapy, along with the role of SMPDA in facilitating M2 macrophage polarization within the gel. Accordingly, these findings suggest that the SMPDA/G holds substantial promise for clinical application in infected wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.