Abstract

AbstractStem‐cell‐based therapeutic strategies are promising in the clinical treatment of intrauterine adhesions (IUAs), while endometrial regeneration still hardly restores the structure and function of the endometrium because of the inadequate microenvironment for the grafted stem cells and subsequent limited therapeutic efficiency. Herein, an injectable porous hydrogel scaffold (PH scaffold) with customizable shapes is presented by using a microfluidic‐based 3D printing technique for adipose‐derived stem cells (ADSCs) delivery to enhance endometrial regeneration. These scaffolds display a controllable interconnected porous structure, which not only facilitates the encapsulation of ADSCs within the scaffold but also supports the recovery to their original shapes after injection. Furthermore, the cell viability of the laden ADSCs is well‐maintained post‐injection, exhibiting promotive effects on cell migration, proliferation, and tube formation. Based on these features, an ADSCs‐laden PH scaffold with a hollow endometrium‐mimicking morphology is designed and in situ injected into the damaged endometrium in rats of IUAs. These results show that the ADSCs‐laden PH scaffolds can enhance functional endometrial regeneration by suppressing the inflammatory response, promoting cell proliferation, and improving vascularization. Thus, it is believed that such unique 3D‐printed porous scaffolds are promising candidates for cell delivery, which also provides a minimally‐invasive and effective strategy for endometrial regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.