Abstract

In this paper, based on a theoretical model (Shneider and Pekker 2013 Phys. Rev. E 87 043004), it has been shown experimentally that the initial stage of development of a nanosecond breakdown in liquids is associated with the appearance of discontinuities in the liquid (cavitation) under the influence of electrostriction forces. Comparison of experimentally measured area dimensions and its temporal development were found to be in a good agreement with the theoretical calculations. This work is a continuation of the experimental and theoretical works (Dobrynin et al 2013 J. Phys. D: Appl. Phys. 46 105201, Starikovskiy 2013 Plasma Sources Sci. Technol. 22 012001, Seepersad et al 2013 J. Phys. D: Appl. Phys. 46 162001, Marinov et al 2013 Plasma Sources Sci. Technol. 22 042001, Seepersad et al 2013 J. Phys. D: Appl. Phys. 46 3555201), initiated by the work in (Shneider et al 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1597–82), in which the electrostriction mechanism of breakdown was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.