Abstract

An experimental study has been conducted to investigate the initiation, propagation, and arrest of bimaterial interface cracks subjected to controlled stress wave loading in the form of a tensile dilatational stress wave pulse. The tensile pulse is generated by detonating lead azide explosive in a specially designed specimen. Dynamic loading of the bimaterial interface results in crack initiation, propagation, and arrest, all in the same experiment. This failure event is observed using photoelasticity in conjunction with high speed photography. Full field data from the experimentally obtained isochromatic fringe patterns is analyzed to determine time histories of various fracture parameters such as the crack tip speed, the dynamic complex stress intensity factor, the energy release rate, and the mixity. The experimental data is also used to quantify the values of the dynamic initiation and arrest toughness and to evaluate a recently proposed dynamic interface fracture criterion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.