Abstract

In this paper we show that partial deprivation of a carbon source, a nitrogen source, or phosphate in the presence of all other nutrients needed for growth initiates meiosis and sporulation of Saccharomyces cerevisiae homothallic strain Y55. For carbon deprivation experiments, cells were grown in synthetic medium (pH 5.5) containing an excess of one carbon source and then transferred to the same medium containing different concentrations of the same carbon source. In the case of transfer to different acetate concentrations, the log optical density at 600 nm increased at the previous rate until the cells had used up all of the acetate, whereupon the cells entered a stationary phase and did not sporulate. The same was observed with ethanol. In contrast, at different concentrations of dihydroxy-acetone or pyruvate, cells grew at different rates and sporulated optimally at intermediate concentrations (50 to 75 mM). The response to galactose was similar but reflected the presence of a low-affinity galactose transport system and the induction of a high-affinity galactose transport system. Cells could also sporulate when a glucose medium ran out of glucose, apparently because they initiated sporulation during the subsequent lag period and then used the produced ethanol as a carbon source. For phosphate deprivation experiments, cells growing with excess ethanol or pyruvate and phosphate were transferred to the same medium containing limiting amounts of phosphate. First, they used up the intracellular phosphate reserves for rapid growth, and then they sporulated optimally when an intermediate concentration (30 muM) of phosphate had been added to the medium. For nitrogen deprivation experiments, cells grown with excess acetate, ethanol, or pyruvate and NH(4) (+) were transferred to the same medium from which all nitrogen had been removed. These cells sporulated well in acetate medium but poorly in ethanol and pyruvate media. However, the sporulation frequency in the latter media could be increased greatly by adding intermediate concentrations (1 mM) of the slowly metabolizable amino acids glycine, histidine, or phenylalanine. If one assumes that the sporulation response to partial deprivation of carbon-, nitrogen-, or phosphorus-containing compounds reflects control by a single metabolite, the intracellular concentration of this metabolite may decide at the START position (G1 phase) of the cell cycle whether a/alpha cells enter mitosis or meiosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.