Abstract

This work presents high-resolution 3D numerical model of transform fault initiation at rifted continental margins. Our petrological-thermomechanical visco-plastic model allows for spontaneous nucleation of oceanic spreading process in a continental rift zone and takes into account new oceanic crust growth driven by decompression melting of the asthenospheric mantle. Numerical model predicts that ridge-transform spreading pattern initiate in several subsequent stages: crustal rifting (0–1.5 Myr), spreading centers nucleation and propagation (1.5–3 Myr), proto-transform fault initiation and rotation (3–5 Myr) and mature ridge-transform spreading (> 5 Myr). Comparison of modeling results with the natural data from the Woodlark Basin suggests that the development of this region closely matches numerical predictions. Similarly to the model, the Moresby (proto-) Transform terminates in the oceanic rather than in the continental crust. This fault associates with a notable topographic depression and formed within 0.5–2 Myr while linking two offset overlapping spreading segments. Model reproduces well characteristic “rounded” contours of the spreading centers as well as the presence of a remnant of the broken continental crustal bridge observed in the Woodlark Basin. Proto-transform fault traces and truncated tip of one spreading center present in the model are also documented in nature. Numerical results are in good agreement with the concept of Taylor et al. (2009) which suggests that spreading segments nucleate en echelon in overlapping rift basins and that transform faults develop as or after spreading nucleates. Our experiments also allow to refine this concept in that (proto)-transform faults may also initiate as oblique rather than only spreading-parallel tectonic features. Subsequent rotation of these faults toward the extension-parallel direction is governed by space accommodation during continued oceanic crust growth within offset ridge-transform intersections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call