Abstract

This paper describes an experimental study of the initiation of solid explosives, and in particular the effect of artificially introducing transient hot spots of known maximum temperature. This was done by adding small foreign particles (or grit) of known melting-point. The minimum transient hot-spot temperature for the initiation of a number of secondary and primary explosives has been determined in this way. It is shown that the melting-point of the grit is the determining factor , and all the grits which sensitize these explosives to initiation either by friction or impact have melting-points above a threshold value which lies between 400 and 550 ° C. Grit particles of lower melting-point do not sensitize the explosives. The same explosives initiated by the adiabatic compression of air required, for initiation, minimum transient temperatures of the same order as the threshold melting-point values. The results provide strong evidence that the initiation of solids as well as of liquids by friction and impact is thermal in origin and is due to the formation of localized hot spots. There is evidence that in the case of the majority of secondary explosives which melt at comparatively low temperatures, intergranular friction is not able to cause explosion and the hot spots must be formed in some other way. With the primary explosives which explode at temperatures below their melting-points, hot spots formed by intergranular friction can be important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.