Abstract

The high reactivity of silver nanoparticles leads to their broad applications in the anti-bacterial field; however, the safety of silver nanoparticles has attracted increasing public attention. After exposure to silver nanoparticles in vivo, the liver serves as their potential deposition site; however the potential biological effects of such nanoparticles on hepatocytes at low dosages are not well understood. Here, we study the interaction between gold nanorod core/silver shell nanostructures (Au@Ag NRs) and human hepatocytes, HepG2 cells, and determine that Au@Ag NRs at sub-lethal doses can induce autophagy. After uptake, Au@Ag NRs mainly localize in the lysosomes where they release silver ions and promote the production of reactive oxygen species (ROS). The ROS then suppress the AKT-mTOR signaling pathway and activate autophagy. In addition, oxidative stress results in lysosomal impairment, causing decreased ability for lysosomal digestion. Moreover, oxidative stress also affects the structure and function of mitochondria, leading to the initiation of protective autophagy to eliminate the damaged mitochondrion. Our study shows that at sub-lethal dosages, silver nanomaterials may alter the physiological functions of hepatic cells by activating protective autophagy and cause potential health risks, indicating that cautious consideration of the safety of nanomaterials for certain applications is necessary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.