Abstract

ABSTRACT We have investigated the autonomous migration of marginal cells and their interactions with extracellular matrix (ECM) located on the inner surface of the blastocoel roof in the urodele amphibian, Pleurodeles waltl, using a novel in vitro migration assay. Animal hemispheres containing equatorial cells removed at different cleavage stages and dorsal marginal zone (DMZ) expiants of early gastrula stage were cultured either on fibronectin (FN)-coated or ECM-conditioned substrata. In explanted animal hemispheres, dorsal marginal cells showed autonomous migration on FN-coated substratum at the same time as the onset of gastrulation in control embryos. They acquired this capacity at least at the 32-cell stage, whereas lateral and ventral marginal cells acquired it after the 64-cell stage. DMZ outgrowths of early gastrula stage exhibited auton-omous spreading on both substrata. In addition, we showed that they spread preferentially toward the ani-mal pole when deposited on substratum conditioned by the dorsal roof of the blastocoel. By culturing dissociated marginal cells on ECM-conditioned substratum, we also found that increased spreading capacity of marginal cells was related to the initiation of their migration. A comparative study of the migration of marginal cells in ultraviolet (u.v.)-irradiated and normal embryos was also made. The results indicate that dorsal marginal cell migration was absent or dramatically reduced by u.v.-irradiation. These results suggest that the differential acquisition in the spreading capacity both in timing and in intensity around the marginal zone was correlated with the sequential involution of mesodermal cells in the course of gastrulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.