Abstract

This paper presents methodologies to predict thermodynamic conditions that initiate flash boiling by spontaneous nucleation of liquids consisting of hundreds of miscible liquids and their lower order surrogate mixtures. The methods are illustrated with a kerosene-based fuel and a seven-component surrogate for it. The predictions are compared to measurements of nucleation temperatures obtained from a pulse-heating technique that rapidly heats a microscale platinum film immersed in a pool of the test fluid. Nucleation temperatures are predicted using a generalized corresponding states principle (GCSP), and a modification of classical nucleation theory that considers the mixture as a pseudo single component fluid (PSCF). The intent is to offer a simple means to predict the initiation of flash boiling that can have important consequences for fuel efficiency in combustion engines. We show that contact angle has a strong effect such that predicted and measured spontaneous nucleation temperatures agree for a giv...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call