Abstract

Erythropoiesis is the process of red blood cell production in the bone marrow. Terminal stages of human erythropoiesis occur in multicellular structures called erythroblastic islands (EBIs). EBIs contain up to several dozen erythroid cells of varying maturities organized around a central macrophage. Immature erythroid cells, burst forming units (BFU-E) circulate in blood and home to bone marrow, where they can have limited but random movement. When BFU-Es approach a macrophage, they divide producing colony forming units-erythroid (CFU-E), which are the next stage of erythroid differentiation. CFU-Es and their immediate progeny, proerythroblasts, can self-renew, differentiate into more mature cells or die by apoptosis. The BFU-E, CFU-E, and the subsequent erythroblast stages provide normal functioning of erythropoiesis. In this work we develop a hybrid discrete-continuous model in order to describe normal erythropoiesis in the bone marrow. Cells are represented as individual objects that move, divide, differentiate, die and interact with each other. We show how BFU-E cells initiate EBIs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.