Abstract

A dusty plasma formed in chain exothermal reactions initiated by radiation of a high-power gyrotron in mixtures of metal and dielectric powders has been described. An oscillatory character of such chain reactions, as well as the appearance of dust particles at the first (explosive) stage, has been detected. The tracks, velocities, and sizes of dust particles have been measured. It has been revealed that ensembles of dust particles appear in a reactor after switching-off of the gyrotron against the background of development of chemical reactions. The time of existence of these ensembles is three or four orders of magnitude larger than the duration of a microwave radiation pulse. The quasistationary state of the low-temperature plasma with charged macroparticles appears because of both the chemical heating of the mixture in the reactor and thermophoresis. It has been shown that dust particles are necessary as crystallization nuclei for the creation (or deposition) of complex composites of nano- and micromaterials produced in secondary plasma chemical synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.