Abstract

Initiation of detonation by a hypersonic conical projectile launched into a combustible gas mixture is investigated. From analytic considerations of the flowfield, energetic and kinetic limits are proposed to predict the conditions required to initiate an oblique detonation wave in the mixture. To experimentally investigate these limits, projectiles with cone half angles varying from 15° to 60° were launched into a stoichiometric mixture of hydrogen/oxygen with 70% argon dilution at initial pressure between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities as great as 2.5 km/s (corresponding to 150% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via schlieren photography. Five combustion regimes could be observed about the projectile ranging from a prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. The two theoretical limits provide a means to interpret the observed flowfield regimes and are in satisfactory agreement with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.