Abstract

We computationally investigated the properties of positive streamers propagating inside strings of bubbles filled with humid air at atmospheric pressure, immersed in liquids and aligned along the electric field or transversal to it. We show that orientation of the string and proximity of bubbles are crucial for the streamer formation and re-initiation in the neighboring bubbles. For the vertical string (aligned along the electric field) there is a small field depletion inside the bubbles due to mutual polarization compared to the field in an isolated bubble. As a result, in a vertical string the ‘streamer hopping’ is more sensitive to the bubble separation. The streamer hopping is observed only when the separation is smaller than 300 μm. Polarization of the horizontal string of bubbles results in higher electric field inside the bubbles as compared to that in an isolated bubble. In this case, ‘streamer hopping’ is observed for the bubble separation 500 μm or larger. We also investigated the arrays of five and nine bubbles and showed that the enhancement of the electric field and streamer development depend on how many field depleting poles or field enhancing equators are in close proximity to the particular bubble.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.