Abstract

Uropathogenic Escherichia coli produce heteropolymeric surface fibers called P pili, which present an adhesin at their tip that specifically recognizes globoside receptors on the host uroepithelium. The initial attachment step is thought to be essential for pathogenesis. P pili are composite fibers consisting of a thin tip fibrillum joined end to end to a rigid helical rod. Here we show that the ordered assembly of these structures requires the activity of two proteins that are minor components of the tip fibrillum, PapF and PapK. PapF is required for the correct presentation of the adhesin at the distal end of the tip fibrillum. PapK regulates the length of the tip fibrillum and joins it to the pilus rod. We propose that these subunits function as adaptors, by providing complementary surfaces to different substructures of the pilus and promoting their proper associations. In addition, the conversion of chaperone-subunit complexes into pili depends on PapF and PapK since a papF- papK- double mutation abolishes piliation. We suggest that in addition to the adaptor functions of PapF and PapK, they are also required to initiate the formation of tip fibrillae and pilus rods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.