Abstract

Hafnium oxide interfaces were studied on two related group III rich semiconductor surfaces, InAs(0 0 1)-(4x2) and In(0.53)Ga(0.47)As(0 0 1)-(4x2), via two different methods: reactive oxidation of deposited Hf metal and electron beam deposition of HfO(2). The interfaces were investigated with scanning tunneling microscopy and spectroscopy (STS). Single Hf atom chemisorption sites were identified that are resistant to oxidation by O(2), but Hf islands are reactive to O(2). After e(-) beam deposition of <<1 ML of HfO(2), single chemisorption sites were identified. At low coverage (<1 ML), the n-type and p-type HfO(2)/InGaAs(0 0 1)-(4x2) interfaces show p-type character in STS, which is typical of clean InGaAs(0 0 1)-(4x2). After annealing below 200 degrees C, full coverage HfO(2)/InGaAs(0 0 1)-(4x2) (1-3 ML) has the surface Fermi level shifted toward the conduction band minimum for n-type InGaAs, but near the valence band maximum for p-type InGaAs. This is consistent with the HfO(2)/InGaAs(0 0 1)-(4x2) interface being at least partially unpinned, i.e., a low density of states in the band gap. The partially unpinned interface results from the modest strength of the bonding between HfO(2) and InGaAs(0 0 1)-(4x2) that prevents substrate atom disruption. The fortuitous structure of HfO(2) on InAs(0 0 1)-(4x2) and InGaAs(0 0 1)-(4x2) allows for the elimination of the partially filled dangling bonds on the surface, which are usually responsible for Fermi level pinning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call