Abstract

In this paper, an ion micro dispenser (IMD) was used to initiate a single pit by generating chloride anions above a 316L stainless steel electrode in either H2SO4 or HClO4 electrolyte. The current variations with respect to time provided an unambiguous characterization of the single pit evolution. Different pit shapes were observed depending on both the nature of the electrolyte and potential applied to the electrode. Substituting SO42− for ClO4− gave smaller (in diameter) but deeper pits at the early stage of pitting. However, when using a different setup that allows the sustaining of the pit propagation with a continuous supply of Cl−, the deeper pits were observed in HClO4 rather than H2SO4. The formation of an iron sulphate salt film at the bottom of the pit by precipitation of dissolution products in H2SO4 slowed down the corrosion rate. At high potentials, the repassivation mechanism outweighed the metal dissolution in the ClO4− containing solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.