Abstract

The fusion peptide (FP) domain is necessary for the fusogenic activity of spike proteins in a variety of enveloped viruses, allowing the virus to infect the host cell, and is the only part of the protein that interacts directly with the target membrane lipid tails during fusion. There are consistent findings of poration by this domain in experimental model membrane systems, and, in certain conditions, the isolated FPs can generate pores. Here, we use molecular dynamics simulations to investigate the specifics of how these FP-induced pores form in membranes with different compositions of lysolipid and POPC. The simulations show that pores form spontaneously at high lysolipid concentrations via hybrid intermediates, where FP aggregates in the cis leaflet tilt to form a funnel-like structure that spans the leaflet and locally reduces the hydrophobic thickness that must be traversed by water to form a pore. By restraining a single FP within an FP aggregate to this tilted conformation, pores can be formed in lower-lysolipid-content membranes, including pure POPC, on the 100-ns timescale, much more rapidly than in unbiased simulations in bilayers with the same composition. The pore formation pathway is similar to the spontaneous formation in high lysolipid concentrations. Depending on the membrane composition, the pores can be metastable (as seen in POPC) or lead to membrane rupture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.