Abstract

Spinal cord injury (SCI) above the level of the lumbosacral spinal cord produces lower urinary tract (LUT) dysfunction, resulting in impairment of urine storage and elimination (voiding). While spontaneous functional recovery occurs due to remodeling of spinal reflex micturition pathways, it is incomplete, indicating that additional strategies to further augment neural plasticity following SCI are essential. To this end, acute intermittent hypoxia (AIH) exposure has been proposed as a therapeutic strategy for improving recovery of respiratory and other somatic motor function following SCI; however, the impact of AIH as a therapeutic intervention to improve LUT dysfunction remains to be determined. Therefore, we examined the effects of daily AIH (dAIH) on both spontaneous micturition patterns and reflex micturition event (rME) behaviors in adult female Sprague-Dawley rats with mid-thoracic moderate contusion SCI. For these experiments, dAIH gas exposures (five alternating 3 min 12% O2 and 21% O2 episodes) were delivered for 7 consecutive days beginning at 1-week after SCI, with awake micturition patterns being evaluated weekly for 2–3 sessions before and for 4 weeks after SCI and rME behaviors elicited by continuous infusion of saline into the bladder being evaluated under urethane anesthesia at 4-weeks after SCI; daily normoxia (dNx; 21% O2 episodes) served as a control. At 1-week post-SCI, both an areflexic phenotype (i.e., no effective voiding events) and a functional voiding phenotype (i.e., infrequent voiding events with large volumes) were observed in spontaneous micturition patterns (as expected), and subsequent dAIH, but not dNx, treatment led to recovery of spontaneous void frequency pattern to pre-SCI levels; both dAIH- and dNx-treated rats exhibited slightly increased void volumes. At 4-weeks post-SCI, rME behaviors showed increased effectiveness in voiding in dAIH-treated (compared to dNx-treated) rats that included an increase in both bladder contraction pressure (delta BP; P = 0.014) and dynamic voiding efficiency (P = 0.018). Based on the voiding and non-voiding bladder contraction behaviors (VC and NVC, respectively) observed in the BP records, bladder dysfunction severity was classified into mild, moderate, and severe phenotypes, and while rats in both treatment groups included each severity phenotype, the primary phenotype observed in dAIH-treated rats was mild and that in dNx-treated rats was moderate (P = 0.044). Taken together, these findings suggest that 7-day dAIH treatment produces beneficial improvements in LUT function that include recovery of micturition pattern, more efficient voiding, and decreased NVCs, and extend support to the use of dAIH therapy to treat SCI-induced LUT dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call