Abstract

Rechargeable Mg-ion battery is regarded as a promising candidate for grid-scale energy storage due to the intriguing features of Mg, including high volumetric capacity, enhanced safety and abundance. However, solid-state Mg-ion full batteries have been rarely reported originating from the limited availability of electrodes and electrolytes. Here, we, developed a solid-sate Mg hybrid ion full battery consisting of an cobalt hexacyanoferrate cathode, an organic 3,4,9,10-perylenetetracarboxylic diimide anode and a solid polymer electrolyte of poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) film filled with polyethylene oxide (PEO)/ionic liquid-based magnesium salt electrolyte (ILMSE). The solid-sate batteries can operate well at high rate of 3A⋅g−1 with a high capacity of 75 mAh•g−1 and superior cyclic stability of 95.9% after 5000 cycles at 2 A⋅g−1. More interestingly, the solid-state battery can withstand a high temperature up to 120 °C, a low temperature down to -20 °C, as well as sewing test of 180 times, demonstrating excellent temperature adaptability and superior sewability. This is the first demonstration of a solid-state Mg ion battery with high excellent electrochemical performance, flexibility and environmental adaption, which could pave the way for practical application of Mg-ion batteries for grid-scale energy storage and flexible/wearable application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.