Abstract

A solvent-free route of initiated chemical vapor deposition (iCVD) was used to synthesize a bio-renewable poly(α-Methylene-γ-butyrolactone) (PMBL) polymer. α-MBL, also known as tulipalin A, is a bio-based monomer that can be a sustainable alternative to produce polymer coatings with interesting material properties. The produced polymers were deposited as thin films on three different types of substrates—polycarbonate (PC) sheets, microscopic glass, and silicon wafers—and characterized via an array of characterization techniques, including Fourier-transform infrared (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR), ultraviolet visible spectroscopy (UV–vis), differential scanning calorimetry (DSC), size-exclusion chromatography (SEC), and thermogravimetric analysis (TGA). Optically transparent thin films and coatings of PMBL were found to have high thermal stability up to 310 °C. The resulting PMBL films also displayed good optical characteristics, and a high glass transition temperature (Tg~164 °C), higher than the Tg of its structurally resembling fossil-based linear analogue-poly(methyl methacrylate). The effect of monomer partial pressure to monomer saturation vapor pressure (Pm/Psat) on the deposition rate was investigated in this study. Both the deposition rate and molar masses increased linearly with Pm/Psat following the normal iCVD mechanism and kinetics that have been reported in literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.