Abstract
We suggest a new approach to the problem of dimensional reduction of initial/boundary value problems for evolution equations in one spatial variable. The approach is based on higher-order (generalized) conditional symmetries of the equations involved. It is shown that reducibility of an initial value problem for an evolution equation to a Cauchy problem for a system of ordinary differential equations can be fully characterized in terms of conditional symmetries which leave invariant the equation in question. We also give some examples of the solution of initial value problems for second- and third-order nonlinear differential equations by reduction by their conditional symmetries. We give a systematic classification of general second-order partial differential equations admitting second-order conditional symmetries, based on Lie’s classification of invariant second-order ordinary differential equations. This yields five classes of principally new initial value problems for nonlinear evolution equations which admit no Lie symmetries and are reducible via second-order conditional symmetries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.