Abstract

We study properties of isolated integrable quantum systems after a sudden quench starting from thermal states. We show that, even if the system is initially in thermal equilibrium at finite temperature, the diagonal entropy after a quench remains a fraction of the entropy in the generalized ensembles introduced to describe integrable systems after relaxation. The latter is also, in general, different from the entropy in thermal equilibrium. Furthermore, we examine the difference in the distributions of conserved quantities in the thermal versus the generalized ensembles after a quench and show that they are also, in general, different from each other. This explains why these systems fail to thermalize. A finite-size scaling analysis is presented for each quantity, which allows us to make predictions for thermodynamically large lattice sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.