Abstract

The transport direction of water droplets on a functionalized surface is of great significance due to its wide applications in microfluidics technology. The prevailing view is that a water droplet on a wedge-shaped groove always moves towards the wider end. In this paper, however, molecular dynamics simulations show that a water droplet can move towards the narrower end if placed at specific positions. It is found that the direction of water droplet transport on a grooved surface is related to its initial position. The water droplet moves towards the wider end only when it is placed near the wider end initially. If the water droplet is placed near the narrower end, it will move in the opposite direction. The novel phenomenon is attributed to the opposite interactions of the groove substrate and the groove upper layers with water droplets. Two effective models are proposed to exploit the physical origin of different transport directions of water droplets on a wedge-shaped groove surface. The study provides an insight into the design of nanostructured surfaces to effectively control the droplet motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call