Abstract

Pose graph optimization is the non-convex optimization problem underlying pose-based Simultaneous Localization and Mapping (SLAM). If robot orientations were known, pose graph optimization would be a linear least-squares problem, whose solution can be computed efficiently and reliably. Since rotations are the actual reason why SLAM is a difficult problem, in this work we survey techniques for 3D rotation estimation. Rotation estimation has a rich history in three scientific communities: robotics, computer vision, and control theory. We review relevant contributions across these communities, assess their practical use in the SLAM domain, and benchmark their performance on representative SLAM problems (Fig. 1). We show that the use of rotation estimation to bootstrap iterative pose graph solvers entails significant boost in convergence speed and robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.