Abstract

This paper considers the economic dispatch problem for a network of power generators and customers. In particular, our aim is to minimize the total generation cost under the power supply–demand balance and the individual generation capacity constraints. This problem is solved in a distributed manner, i.e., a dual gradient-based continuous-time distributed algorithm is proposed in which only a single dual variable is communicated with the neighbors and no private information of the node is disclosed. The proposed algorithm is simple and no specific initialization is necessary, and this in turn allows on-line change of network structure, demand, generation constraints, and even the participating nodes. The algorithm also exhibits a special behavior when the problem becomes infeasible so that each node can detect over-demand or under-demand situation of the power network. Simulation results on IEEE 118 bus system confirm robustness against variations in power grids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.