Abstract

Probabilistic bits (p-bits) with thermal- and spin torque-induced nondeterministic magnetization switching are promising candidates for performing probabilistic computing. Previously reported spin torque p-bits include volatile low-energy barrier nanomagnets (LBNMs) with spontaneously fluctuating magnetizations and initialization-necessary nonvolatile magnets. However, initialization-free nonvolatile spin torque p-bits are still lacking. Here, we demonstrate moderately thermal stable spin-orbit torque (SOT) p-bits with non-consecutively deposited Pt//Pt/Co/Pt stacks. Backhopping-like (BH) magnetization switching with a wide range current-tunable probability of final up and down magnetization states from 0% to 100% was achieved, regardless of the initial magnetization state, which was attributed to the interplay of SOT and thermal contributions. Integer factorization using such BH-SOT p-bits in zero magnetic field was demonstrated at times that are significantly shorter than those of existing nonvolatile STT or volatile LBNMs p-bits. Our realization of initialization-free and magnetic field-free moderately thermally stable BH-SOT p-bits opens up a new perspective for probabilistic spintronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.