Abstract
The recently discovered variational PDEs (partial differential equations) for finding missing boundary conditions in Hamilton equations of optimal control are applied to the extended-space transformation of time-variant linear-quadratic regulator (LQR) problems. These problems become autonomous but with nonlinear dynamics and costs. The numerical solutions to the PDEs are checked against the analytical solutions to the original LQR problem. This is the first validation of the PDEs in the literature for a nonlinear context. It is also found that the initial value of the Riccati matrix can be obtained from the spatial derivative of the Hamiltonian flow, which satisfies the variational equation. This last result has practical implications when implementing two-degrees-of freedom control strategies for nonlinear systems with generalized costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.