Abstract

Abstract Perpetual winter simulations using the NCAR Whole Atmosphere Community Climate Model (WACCM) are conducted to document the differences of the initial transient response of the boreal winter Northern Hemisphere stratospheric polar vortex to central (CPW) and eastern Pacific warming (EPW) events. Idealized patches of positive sea surface temperature (SST) anomalies are superimposed onto a climatological SST field to mimic canonical CPW and EPW forcings. A 20-member ensemble was created by varying initial atmospheric conditions for both CPW and EPW cases. In the ensemble average, the vortex weakens under both CPW and EPW forcing, indicated by a negative zonal mean zonal wind tendency. This tendency is mainly tied to changes in the eddy-driven mean meridional circulation (MMC). A negative anomaly in the eddy momentum flux convergence also plays a secondary role in the weakening. The vortex response, however, differs dramatically among individual ensemble members. A few ensemble members exhibit initial vortex strengthening although weaker in magnitude and shorter in duration than the initial weakening in the ensemble average. The initial state and the subsequent internal variation of the extratropical atmosphere is at least as important as the type of SST forcing in determining the transient response of the stratospheric polar vortex. Interactions between the internal variability of the vortex and SST-driven wave anomalies ultimately determine the nature of the initial transient response of the vortex to EPW and CPW forcing. This sensitivity to the initial atmospheric state has implications for understanding medium-range forecasts of the extratropical atmospheric response to emerging tropical SST anomalies, particularly over high-latitude regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.