Abstract

An analytical scheme on the initial transient process in a simple helical flux compression generator, which includes the distributions of both the magnetic field in the hollow of an armature and the conducting current density in the stator, is developed by means of a diffusion equation. A relationship between frequency of the conducting current, root of the characteristic function of Bessel equation and decay time in the armature is given. The skin depth in the helical stator is calculated and is compared with the approximate one which is widely used in the calculation of magnetic diffusion. Our analytical results are helpful to understanding the mechanism of the loss of magnetic flux in both the armature and stator and to suggesting an optimal design for improving performance of the helical flux compression generator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call