Abstract

The iso-scallop method has been long adopted to achieve a shorter overall machining length. The efficiency and machining performance of this method are largely dominated by the initial tool path. The preferred direction field supplies the local best feed directions. Usually, the offset paths generated by the iso-scallop method largely deviate from the preferred directions, even though the initial path is strictly along the preferred directions. The matching degree of the offset paths and preferred direction field should be taken into consideration when selecting an initial tool path. This paper presents a novel initial path selection method for the iso-scallop method to make whole iso-scallop tool paths and the preferred direction field consistent as much as possible. A surface is re-parameterized to keep the conformality between the surface and parametric domain, which leads to the more regular offset paths on the new parametric domain. By fitting the vector field, streamlines are generated for representing the preferred feed direction on the parametric domain. The offset similarity metric defined by the initial path and streamlines is constructed to measure the matching degree between offset paths and preferred feed directions. Then the feasible path with the best offset similarity for the streamlines will be selected as the initial tool path. In our case study, feed directions with the maximum strip width are chosen. The test results have shown that the tool paths generated by the proposed method achieved a better matching for the selected feed directions and a shorter overall length compared with some existing tool path generation methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.