Abstract
ABT-263 is a potent (K(i) < 1 nM) small-molecule BH3 mimetic that inhibits the antiapoptotic proteins Bcl-2, Bcl-x(L) and Bcl-w. The structurally related Bcl-2 inhibitor ABT-737 exhibits single-agent preclinical activity against lymphoma, small-cell lung carcinoma, and chronic lymphocytic leukemia and displays synergistic cytotoxicity with chemotherapeutics and radiation. ABT-263 was tested at concentrations ranging from 1.0 nM to 10.0 microM using 23 cell lines from the PPTP in vitro panel and was tested in 44 xenograft models representing nine distinct histologies using daily gavage administration of ABT-263 (100 mg/kg) or vehicle for 21 days. ABT-263 was active against approximately one-half of the cell lines of the PPTP in vitro panel. The median IC(50) for all of the lines in the panel was 1.91 microM. ABT-263 induced significant prolongation of the EFS distribution in 9 of 35 (26%) of the solid tumor xenografts, and in 5 of 6 (83%) of the evaluable ALL xenografts. ABT-263 induced no objective responses in the solid tumor panels, but induced CRs in 3 of 6 evaluable xenografts in the ALL panel, including two that were maintained for an additional 3 weeks following treatment cessation. ABT-263 demonstrated in vitro activity against a range of cell lines, with the ALL cell lines showing the greatest sensitivity. ABT-263 demonstrated limited single agent in vivo activity against the PPTP's solid tumor panels but showed significant activity against xenografts in the ALL panel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.