Abstract
In this paper, aluminum circuit boards (ACBs) were designed, fabricated, and tested to demonstrate the possibility and advantages of the ACB technology. Processes were developed to grow high quality alumina <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$({\rm Al}_{2}{\rm O}_{3})$</tex></formula> on Al boards and coat thick copper (Cu) layer over the alumina to produce an Al/alumina/Cu structure. The measured resistance and breakdown voltage of the as-formed 50 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu{\rm m}$</tex></formula> alumina layer is <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${>}{\rm 40}~{\rm M}\Omega$</tex></formula> and 600 VDC respectively. In this design, heat generated by a high power circuit component attached to the Cu layer can conduct through the alumina layer and reach the Al base. Alumina has much higher thermal conductivity than epoxy-glass insulating layer of the popular FR-4 printed circuit boards. The quality of the boards produced in this paper was evaluated rigorously using scanning electron microscope. To test the reliability of the boards, they were put through 500 cycles of thermal cycling test between <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${-}{40}^{\circ}{\rm C}$</tex></formula> to <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">${+}{85}^{\circ}{\rm C}$</tex></formula> and 100 h of high temperature storage test at 250 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$^{\circ}{\rm C}$</tex></formula> . To ensure its compatibility with soldering operations, 10 mm <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\times\,$</tex></formula> 12 mm Cu substrates were bonded to the Al boards using a fluxless tin process. The thickness of the joint is 9.4 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu{\rm m}$</tex></formula> including the intermetallic layers. Despite significant coefficient of thermal expansion mismatch of the structure and large Cu size, the bonded samples show no sign of cracks, breakage, or degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Components, Packaging and Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.