Abstract

Pseudomonas putida Fl oxidizes toluene through cis-toluene dihydrodiol to 3-methylcatechol. The latter compound is the substrate for “meta” fission of the aromatic nucleus. Kinetic and induction experiments indicate that the genes encoding enzymes for these reactions are part of an operon, designated the tod operon, that is coordinately induced and regulated. Strains unable to utilize toluene as a growth substrate were isolated at high frequencies by using screening procedures that utilize the redox dye, 2,3,5-triphenyl-2H-tetrazolium chloride. Biochemical characterization of strains with mutations in the structural genes of the tod operon showed that toluene induces the first four enzymes in toluene degradation by P. putida Fl. The isolation and characterization of pleiotropicnegative mutants together with mutants altered in terms of their expression of tod genes suggests that the tod operon may be under the control of a positive regulatory element.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.