Abstract
The onset of supercontinuum generation in a photonic crystal fiber is investigated experimentally and numerically as a function of pump wavelength and intensity with 100-fs pulses. Soliton formation is found to be the determining factor in the initial step. The formation and behavior of a blueshifted, nonsolitonic component, emitted as the soliton evolves towards the stable regime, is investigated and the role of phase matching through higher-order dispersion is highlighted. Good agreement between experiments and simulations is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.