Abstract

Steroid compounds have many important physiological activities in higher organisms. Testosterone and related steroids are important environmental contaminants that disrupt the endocrine systems of animals. The degradation of steroids, especially under anoxic conditions, is challenging because of their complex chemical structure. A denitrifying gamma-proteobacterium, Steroidobacter denitrificans, able to grow anaerobically on a variety of steroids as the sole carbon and energy source was adopted as a model organism to study the anoxic degradation of testosterone. We identified the initial intermediates involved in the anoxic testosterone degradation pathway of S. denitrificans. We demonstrated that under anoxic conditions, S. denitrificans initially oxidizes testosterone to 1-dehydrotestosterone, which is then transformed to androsta-1,4-diene-3,17-dione. In addition, it seems that androst-4-en-3,17-dione can also be directly produced from testosterone by S. denitrificans cells. In general, the initial steps of anoxic testosterone degradation by S. denitrificans are similar to those of the oxic pathway demonstrated in Comamonas testosteroni.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.