Abstract

The one-neutron nuclear breakup from the Carbon isotopes $^{19}$C and $^{17}$C, is calculated as an example of application of the theory of transfer to the continuum reactions in the formulation which includes spin coupling. The effect of the energy sharing between the parallel and transverse neutron momentum distributions is taken into account thus resulting in a theory which is more general than sudden eikonal approaches. Both effects are necessary to understand properly the breakup from not too weakly bound $l_i>1$ orbitals. Breakup which leaves the core into an excited state below particle threshold is also considered. The core-target interaction is treated in the smooth cut-off approximation. By comparing to presently available experimental data we show how to make some hypothesis on the quantum numbers and occupancy of the neutron initial state. Possible ambiguities in the interpretation of inclusive cross sections are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.