Abstract

Short time behavior of a three dimensional, gravity-driven free surface flow is studied analytically and numerically. Initially the fluid is at rest, held by a vertical wall. A rectangular section of the wall suddenly disappears and the gravity driven three-dimensional flow starts. In order to describe the flow in the early stage, the potential theory is employed. Viscous effects are ignored for small times. The leading order problem is solved by using the Fourier series method and an integral equation method. Local analysis of the flow field close to the side edges of the rectangular section reveals a square root singularity. The flow velocity is also log-singular at the bottom edge of the rectangular section. In the limiting case, as the width of the rectangular section approaches infinity, the results of the classical two-dimensional dam break flow are recovered. Three dimensional effects become important closer to the side edges of the rectangular section.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call